
Proceedings IEEE Robotics and Automation Conference, Minniapolis, MI. 1996 pp. 2149-2159.

Autonomous Underwater Vehicle Control Coordination Using A Tri-Level Hybrid Software
Architecture

A. J. Healey1, D. B. Marco, R. B. McGhee

Autonomous Underwater Vehicle Laboratory
Naval Postgraduate School

Monterey
California, 93943

1 Point of Contact
(408)-656-3462 (Phone)

(408)-656-2238 (Fax)
healey@me.nps.navy.mil

ABSTRACT

This paper proposes the use of Prolog as a rule based
specification language for the coordination of multiple
control functions as required to perform missions with
autonomous underwater vehicles. We first define terms
used in this type of control system and show that such
systems fall into the class of 'Hybrid' controllers coupling
discrete state / time independent and continuous state /
continuous time elements. The design of these systems
has received little attention, but, the software architecture
to implement them is often composed of three levels for
ease of segregation and development of functionality.

An implementation of our controller on the NPS
Phoenix vehicle uses PROLOG as a rule based language
to specify and execute the phases of any mission.
Embedded in the rule body are functions that interface
with the vehicle to gather sensory data and generate
signals as required to trigger transitions between control
functions, and to initiate commands for the initiation of
subsequent control functions. The importance of the use
of PROLOG is that the same code is used for mission
specification as is used for its execution thereby
eliminating the question of correctness.

Control of a mission segment using command
generation to simulaneously drive the vehicle to a point
on space and time (to coincidently reach a given depth
and heading) is described with experimental results. The

development of transitioning signals can be problematic
and is discussed alonside error recovery techniques using
'guaranteed phase completion'.

INTRODUCTION

The human experience is limited underwater. Even
shallow water coastal areas are not well understood. As
an aid to the development of coastal environmental
understanding, new technology is being aimed at using
(semi)autonomous vehicles, requiring acoustic
communications and a degree of autonomy on the vehicle
sufficient to maintain vehicle task control. Building an
ever increasing level of automatic capability into an
underwater vehicle is of interest to us. In particular,
under a new NSF grant, we are concerned with the ease
of reconfiguration of control software code as missions
become more complex or vehicle capabilities change. To
that end, tri-level software architectures are useful for
enabling control over the resulting hybrid system which
comprises discrete state, as well as continuous time -
continuous state elements. The three levels (Strategic,
Tactical, and Execution levels in our terminology),
separate the control requirements into easily modularized
functions encompassing logically intense discrete state
transitioning using asynchronously generated signals for
control of the mission and real time synchronized
controllers that stabilize the vehicle motion to callable
commands.

In our controller architecture, the Strategic level uses
'PROLOG' as a rule based mission control specification

language. It's inference engine cycles through the
predicate rules to manage the discrete event logical
aspects of mission related decisions. It transitions states,
and generally develops the commands that drive the
vehicle through its mission. Error recovery procedures
from failures in the mission tasks or the vehicle
subsystems are included as transitions to 'error' states that
ultimately provide commands to the servo level control
for appropriate recovery action.

The Tactical level - at the moment - is set of "C"
language functions that interface with the 'PROLOG'
predicates and return TRUE / FALSE when called, and
which are interfaced to the real time Execution level
controller using asynchronous message passing through
ethernet sockets.

The Execution level commands the vehicle
subsystems to activate control functions that correspond
to those commanded. Communication from the Tactical
level to the Execution level takes place through a single
socket. By the design of this hierarchical control system,
the Tactical level runs asynchronously and retains the
mission data file and the mission log file in global
memory. It sends command scripts to the Execution
Level and requests data for the evaluation of state
transitions. The architecture is a hybrid between the true
hierarchical control of NASREM [1] and the purely
reactive schemes of subsumptionists [2, 3]. In this way,
control of mission can be retained, while reacting to
unanticipated events is also enabled.

In new work with the NPS PHOENIX - an
autonomous underwater vehicle, we have extended the
flight control experiments that were conducted and
reported previously [4]. We have now developed the
thruster control behavior of the vehicle. Experiments
using command generation to drive orthogonal actions
have been conducted and illustrate herein both the power
of sliding modes for control of transient response and
command tracking, and the power of PROLOG for the
mission coordination.

In order to assist in the subsequent discussion, it
helps to define some terms that have long plagued the
underwater robotics community. We offer the following:

Let the set of all actuators available to the vehicle be
denoted by, A, the set of sensors by S, and the set of
continuous time states of the vehicle be X, then:

Definition: A Control Function (CF), is the use of a
particular subset, a

i
 ⊂ A of vehicle actuators with a

particular subset, s
i
 ⊂ S , of the vehicle sensor suite, to

both estimate a corresponding subset of the continuous
time continuous states, x i ⊂ X , of the vehicle and

drive a particular set of continuous time error states, e i
to zero. The control error is defined as the difference
between a command value and the estimated actual
motion. A control function is analogous to the Robot
Task in [1] and employs an appropriate control law
linking the actuator commands, ui(kdt), to sensory
output, y(kdt) and commands r

i
(t).

CF
i
: u

i
=f

i
(y

i
),r

i
(t)

Definition: A Vehicle Primative is a linguistic string
associated with a particular Control Function.

Definition: Orthogonal Control Functions are those that
utilize independent subsets of actuators.

Definition: Interacting Control Functions are those that
utilize part of the same subset of actuators utilized by
other CF's.

Definition: A Sensor Based Reaction, as in a low
energy level in the vehicle, vehicle shoaling, or any
obstacle detection, is a condition when a sensor value
sustains a critical value. If c is the critical value, ε is a
small positive bound, and F is a low pass filter, a Sensor
Based Reaction occurs if

ε <<−− |c)y(F| .

All Control Functions terminate at a 'Termination'.

Definition: The Termination of a control function
occurs either

1) at a specified time,

2) when a positive definite function)(P ⋅⋅ of the

control error lies within a prespecified bound. If b , is a
positive bound and)(F ⋅⋅ is a low pass filter the

termination condition is

b))e(P(F <<

3) upon a Sensor Based Reaction.

Definition: A Behavior (B), is described as the
execution of a particular sequence of CFs each driven to
a termination.

Comment: The state of performing a given CF is a
"discrete state" of the system. The condition of reaching a
termination is linked to the transition of the discrete state
of the system from one state to another as defined by the
system Behavior (B). A Behavior can be represented for
example, by a Petri Net, a finite state diagram, or,
linguistically, by a set of Prolog rules.

Definition: A Hybrid Control System in the context of
this work is a control system of hardware and software
elements that is capable of driving a vehicle through a set
of Behaviors.

The definition of a mission plan is now reduced to the
specification of a sequence of Behaviors (B) to be
conducted during each mission phase. These include the
ordered sequence of control functions and their
termination conditions.

The principle of "guaranteed phase completion" is such
that all control functions have a termination so that each
mission phase, its behaviors and control functions, will
terminate - essentially, the mission plan will specify that
all mission phases complete - either sucessfully or by
abortion.

VEHICLE CONTROL SYSTEM

The control concepts presented are being evaluated
experimentally using the NPS PHOENIX vehicle shown
in Figure 1. It has been recently outfitted with the tri-
level controller, currently implemented in hardware
using three networked processors, illustrated in Figure 2.
All Execution level software is written in 'C' and runs on
a GESPAC M68030 processor in a separate card cage
inside the boat. Connected in the same card cage is an
ethernet card and an array of real time interfacing
devices for communications to sensors and actuators
indicated in the details of Figure 3. The Execution level
control code containing a set of functions in a compiled
module called 'exec' is downloaded first and run to
activate any mission. It starts the communication s socket
on the GESPAC side and waits for the higher level
controller to start.

Strategic Level

The Strategic level PROLOG rules which specify the
mission to be conducted are compiled and linked together

with the supporting Tactical level 'C' language functions
into the single executable process called
'Mission_Control', that is run in a SUN Sparc 4 laptop
computer and linked through ethernet and a non-
blocking socket to the Gespac processor. Upon starting, it
first opens the SUN side of the communications socket,
initiating the ethernet link between both SUN and
GESPAC processors, then sending sequenced control
commands to the vehicle. All vehicle control functions,
with the exception of the transmission of sonar imaging
data, communicate by message passing through that
socket.

Tactical Level Software

A second SUN process called the 'Sonar Manager' is
opened which runs asynchronously in the SUN and with
equal priority to the 'Mission_Control'. This process is
linked through a separate socket to the GESPAC for the
purpose of the reception and handling of sonar imaging
data. This process is activated if and when sonar is
activated by a Strategic level predicate call. The 'Sonar
Manager' captures data that is sent out from the
Execution level as soon as it has been acquired, and then
processes and passes the data to be displayed on the IRIS
Graphics workstation for visualization purposes. Tactical
level software is designed to link with the PROLOG rule
base, send vehicle primatives to the execution level
software and process the numerical computaions
associated with computing the termination conditions. It
necessarily requires the computation of filtered data, and
t the present stage of development performs computation
asynchronously. Time is not critical as the
communication and commands to receive data and
activate or terminate control functions are designed to
change only as needed and to not influence the stability
of the vehicle motion.

Execution Level Software

The structure of the Execution level software is
illustrated by Figure 3 which indicates that it is
composed of software at the hardware interface (software
drivers) as well as software for vehicle control. After
initialization of power systems and sonars, and the basic
driver settings, the PIA card pins that control the on/off
feature of power supplies, thruster power, screw power,
and sonar power, a simple timing loop is entered and
reentered at a fixed update rate (in our case 0.1 sec.)
during which the following takes place,

1. read the socket 'A' for behavior based mode
command flags and control set points,

2. read the sensors,

3. selecting appropriate 'C' code control functions for
computing and sending control values to actuators, using
multiple 'case of ' checks for distinguishing the
commands,

4. writing selected data to memory or sockets 'A' or 'B'
as appropriate, and

5. checking time for any time based events and waiting
for the next timing interrupt to maintain integrity of the
digital control loop,

Specific control laws as built into callable modules of
code are easily selected according to the vehicle
primatives sent.

Vehicle Primative Development

In previous work [5], waypoint following in a transit
phase of a mission was demonstrated in a swimming pool
test area where competent control functions were
demonstrated including vehicle primatives

a) Forward_Speed_Control
Control vehicle forward speed using stern

screws.
b) Fin_Steering

Control vehicle heading using bow and stern
rudders.

c) Fin_Depth_Control
Control depth of the vehicle using bow and stern
planes.

d) Waypoint_Following
Follow three dimensional (X,Y,Z) waypoints
using fins and stern screws.

e) Bottom_Following
Control the height of the vehicle above the
bottom.

These Control functions were developed with a)-c)
running simultaneously, but subsumed by the guidance
laws implemented in d); and, with c) subsumed by e).
The control laws corresponding to these functions have
been implemented based on PD, and Sliding Mode
methods as explained in [6].

Control laws for these functions are readily
accomplished entirely in the Execution level using digital

control algorithms running at 0.1 sec. update rate. Now,
however, new, more complex functions are being enabled
using active control of thrusters and sonar. These
include,

g) Submerge_and_Pitch_Control
Control vehicle depth and pitch angle using

vertical thrusters.
h) Heading_Control

Control vehicle heading using lateral thrusters.
i) Longitudinal_Positional_Control

Control longitudinal position of vehicle from a
target.
j) Lateral_Positional_Control

Control lateral position of vehicle from a target
using lateral thrusters.
k) Center_Sonar(Sonar)

Rotate sonar head 'Sonar' to ahead position.
l) Ping_Sonar(Sonar,Command)

Ping sonar 'Sonar' using 'Command'.
m) Update_Head_Position(Sonar,Command)

Update head position of sonar 'Sonar' based on
'Command'.

n) Read_Sonar(Sonar)
Return sonar range from 'Sonar'.

o) Initiate_Filter_For_Sonar_Range
For smoothed range and range rate (ST1000

sonar only).
p) Reinitialize_Filter

Reset filter for next data gathering / control
sequence.

Note: Control functions g) through j) can be implemented
using step input commands for their activation or, for
more precise control over transient behavior, command
generators would be used which specify the desired
position, rate, and acceleration of the output as a function
of time.

Most of these functions need a given subset of the
actuator system to be active under the operation of either
an open loop command or a feedback control law. Some
of the functions use orthogonal sets of actuators and are
thus additive. Some use the same actuators to control
different functions and thus control laws may be additive.
This means, for example, that vertical thrusters may be
used via control laws to control depth as well as pitch,
and lateral thrusters to control heading as well as lateral
position and side slip speed. In combination with
propulsion motors, most functions including
Submerge_and_Pitch_Control, and Longitudinal_-
Position_Control, as well as Heading_Control, may now
be commanded. Heading_Control and Submerge_and_

Pitch_Control and virtually any multiple combination of
a) to o) above that would not cause a conflict of actuator
control or sensor usage, are performed.

Activation of orthogonal behaviors are instituted
using message passing that is a way of communicating
between Tactical Level 'C' functions and the real time
control loop of the Execution Level control. At each pass
through the control loop, a read is made from the
communications socket and a ladder check for particular
'case of' flags determines which set of sensors and
actuators and control laws are to be activated during the
computation cycle. The same technique is used to flag the
activation of sonars, and filtering actions, and similarly
for flags to indicate which data stream is to be written in
return.

Reactive behavior in our controller can be handled
inside the Execution level control loop through command
overrides following a sensor read, as, for instance, a new
obstacle detection requiring an emergency surface or
obstacle avoidance (flinch) response. At a higher degree
in the Tactical level, reactive error recovery can be
handled by resetting key parameters associated with
control performance evaluations. An example is the
resetting of a control gain if a particular function cannot
be stabilized. Reactive behavior is also handled at the
Strategic level by transitioning to states that command an
error recovery procedure such as to surface if, for
example, a particular action is not observed to be taken
after a pre-specified time out.

While the work of [3] has developed GAPPS rules
that are more like our Strategic level rules, but, in the
end would also provide mode commands to vehicle
servos, our work is developed around a rule based control
to sequence mission related tasks [7, 8] according to a
mission plan that could (if one prefers to view it this
way) represent a hierarchy of state machines with
transitioning from one to another as mission phases are
completed. The middle level of our tri-level architecture
is then used to generate the scripts required to produce in
the vehicle the requisite behavioral action. The Tactical
Level functions deal with the interfacing between
asynchronous control function commands and the real
time computational control requirements of the 'sense -
compute - send' cycle within the Execution level vehicle
motion control loop.

The behaviors a) through o) are now stably implemented
in the NPS PHOENIX vehicle through attention to
appropriate digital control loops in the Execution level.
In principle, once developed to a satisfactory point, the

Execution level controller of any vehicle would not
require any change as mission requirements change.

COORDINATED SUBMERGENCE /
ROTATIONAL CONTROL USING COMMAND

GENERATION

As part of a joint mission to evaluate control
software architectures between US and France,
[wang,rock,lee, oceans], it has been decided to evaluate
the performance of the Nps Phoenix in a behavior that
will submerge the vehicle to a specified depth at a
speified rate according to a command function. A similar
function will describe the required heading and heading
rate so that the attainment of the new final position and
heading will occur at a defined final time. The
performance of this type of maneuver with land robotic is
relativle easy but the performance underwater is not
known until now.

In this secion we will describe the command
generators used, and show the control performnac
obtained with sliding mode control functions executing
simulataneously.

Vehicle Model for Submergence

The vehicle dynamics in submergence using both the
bow and stern vertical thrusters can be described by the
following differential equation for the continuous time,
continuous state evolution:

)t(fFt2)t(z)t(zbzM Bprop δ (t))(Z (t) ++++==++ &&&& (1)

where

)added(mmM ++==

)t(v)t(vtprop α)(Z ==

and)added(m is the vertical added mass. α is a

coefficient relating the square of the thruster motor
voltage,)t(v , to the force developed.)t(FB is the

unmatched buoyancy which varies within some bound
but which on any day can be either positive or negative,
and is unknown. b is the coefficient of square law drag,
and)t(fδ describes an upper bound on vehicle/model

parameter mismatch.

The command generator for the submerge motion is
taken from

)T,T,a,z,z(G]z,z,z[f0maxf0comcomcom ==&&&

where a fith order zero jerk profile has been chosen so
that the maximum acceleration and the bandwidth
capacity of the vehicle is not overly exceeded and z 0 , T 0

is the initial depth and starting time while fz , fT is the

final desired depth and time at the end of the maneuver.

Figure 4. Normalized Command Generator Profiles

The sliding mode control law for submerging is
given by

2

1

B

com

))t(ftF)t(z)t(zb
2
1

))/)t((tanh)t(z~z(
2
M

)t(v

−−−−++

 ++++±±==

δ
α

φσηλ
α

)((

&&

&&&

 (2)

where the sliding surface is

)t(z~)t(z~)t(λσ ++== & (3)

and the tracking errors are defined as

)t(z)t(z)t(z~ com −−==
(4)

)t(z)t(z)t(z~ com&&& −−== .

Using integral control the command for voltage is

2

1

)((

−−−−++

++

 ++++±±==

))t(ftF)t(z)t(zb
2
1

))/)t((tanh

)t(z~)t(z~z(
2
M

)t(v

B

21com

δ
α

φση

λλ
α

&&

&&&

 (5)

where

dt)t(z~)t(z~)t(z~)t(∫∫++++== λσ & . (6)

Vehicle Model for Rotation

The vehicle dynamics for rotation about the body-
fixed z-axis (yaw) using both the bow and stern lateral
thrusters can be described by the following differential
equation for the continuous time, continuous state
evolution:

)t(ft2N)t()t(bI propz δψψψ)((t) ++==++ &&&& (7)

where

)added(III zzzzz ++==

)t(v)t(vtN prop α)(==

and)added(I zz is the added inertia about the z-axis. α

is a coefficient relating the square of the thruster motor
voltage, v (t) , to the force developed. b is the coefficient
of square law drag, and δ f (t) describes an upper bound
on vehicle/model parameter mismatch.

The command generator for rotation is taken from

)T,T,a,,(G],,[f0maxf0comcomcom ψψψψψ ==&&& ,

where ψ 0 , T 0 is the initial heading and starting time
while ψ f , T f is the final desired heading and time at

the end of the maneuver and is also fifth order with zero
jerk.

The sliding mode control law for rotational control is
given by

2

1

B

com
z

))t(ftF)t()t(b
2
1

))/)t((tanh)t(~(
2
I

)t(v

−−−−++

 ++++±±==

δψψ
α

φσηψλψ
α

)((

&&

&&&

 (8)

where the sliding surface is

)t(~)t(~)t(ψλψσ ++== & (9)

and the tracking errors are defined as

)t()t()t(~
comψψψ −−==

(10)

)t()t()t(~
comψψψ &&& −−== .

Transition Criteria

Most control phase transitions of the Phoenix are
event based, meaning that a certain set of criteria must be
met in order for a transition to occur. A common
example of this is when a position set point is sent to the
vehicle controllers and reached. A method of
determining whether the vehicle has indeed reached this
point must be programmed into the control logic.
Measuring the position error alone and declaring the
maneuver complete when this error is small is not
sufficient. This is because the vehicle could be
overshooting the commanded position and simply
passing through the set point. Therefore, not only must
the position error be small but the rate error must also be
small. This dual criteria can be expressed mathematically
as a positive definite, linear combination of the position
error e and the position rate error € e . We use,

kekek ewew && ++==σ (11)

where w e and w € e are positive weights for the position
and rate errors respectively. This equation allows a
minimum value of σ , denoted σ 0 , to be specified
defining a threshold for the combination of errors which
can be set relatively large when precision control is not
required or low for extremely precise positioning. Once
σ drops below σ 0 , the maneuver is declared complete
and a transition to the next control phase may occur.

When noisy sensors are used, the noise prevents σ
from settling enough to determine an accurate
measurement for the transition, and the use of Equation

11 alone has shown to be unsatisfactory. The signal can
be smoothed by filtering σ through a first order digital
filter of the form

k
T

f(k)
T

1)f(k)e1(e σσσ ττ /-/- −−++==++ (12)

where σ f is the filtered form of σ , τ is the time

constant of the filter, and T is the sampling time. The
condition for transition can be shown diagrammatically
in Figure xx, which indicates that the signal for
transition, s , is 1 (TRUE) for fσ < f0σ or 0 (FALSE)

for fσ > f0σ . Other dynamic error and time based

signals are computed similarly.

COMMAND TRACKING PERFORMANCE

The following experiment was performed in the NPS
hover tank which measures 6.0 by 6.0 meters square and
1.8 meters deep. During execution all pertinent data was
collected, including depth, depth rate, heading, heading
rate, thruster motor speed, etc. The experiment required
the vehicle to simultaniously submege and rotate to a
predetermined depth of 1 meter and a heading of 180
degrees. It was specified that the final depth and heading
both be reached at 60 seconds from the beginning of the
manuever. This was accomplished using command
generators for both control modes with integral control
for depth using an anti-reset windup saturation of 0.45
m-sec. The following tables give the values used in the
vehicle control law were the vehicle mass, drag and
thruster gains are from [Kevin] and the controller gains
were obtained from computer simulation results.

Table 1. Paramters for Submergence Control

Parameter Value Unit
m 194.88 Kg

m (added) 194.88 Kg

b 1378.18 Kg/m

α 0.018 N/V2

1λ 0.400 rad/sec

λ 2 0.040 rad/sec2

η 0.030 m/sec2

φ 0.061 m/sec

Table 2. Paramters for Heading Control

Parameter Value Unit

I zz 53.60 Kg-m2

I zz (added) 53.60 Kg-m2

b 74.86 Kg-m2

α 0.008 N-m/V2

λ 0.200 rad/sec

η 0.200 rad/sec2

φ 0.200 rad/sec

Figure 5. Normalized Depth and Depth Rate Response

Figure 6. Normalized Heading and Heading Rate
Response

Figures 5 and 6 show the normalized time responses
for depth/depth rate and heading/heading rate
respectively. The vehicle was trimmed to be neutrally
buoyant on the surface and the depth and heading was set
to zero at this point. The depth response tracks very well
until the steady state region where an overshoot occurs.
This is due to the vehicle becoming "heavy" at depth
from hull compression, although the error is quickly
corrected by the integral action of the controller. Since no
disturbance was present in rotation, the heading response
shows an extremely precise tracking performance with
virtually no error.

The depth rate does track the command but is very
noisy due to discretization noise from the A/D converter
associated with the depth cell and the subsequent rate
estimation from this signal. Although the signal is far
from clean, the tracking performance is not adversely
affected. The heading rate measured from the onboard
rate gyroscope shows a definate tracking error and is due
to a non-zero bias in the unit.

It can be seen from Figure 7 that the depth and
heading is simultaneously controlled except for the small
depth overshoot at the end of the maneuver.

Figure 7. Normalized Depth vs. Heading Response

CONCLUSION

The conclusion of our work to date has indicated that
complex behavior can be readily coordinated through
Strategic level rules, that are easily modified. These act
as state transitioning mechanisms and the
communication through Tactical level software to the
Execution level controllers is a simple but convenient
way of commanding competent functions of the vehicle.
The design of well behaved control laws and functions at
the Execution level is essential as a primary part of the
design an is effected through careful attention to the
digital control loop design. Human interfacing within the
controller can take place at any level.

The independent coordination of sonar for range
finding on a bearing, or for imaging over a particular
sector of bearings is needed to derive motion commands
for the vehicle. Smooth vehicle motion can be achieved
in an underwater environment free from current and
wave action provided that attention is given to the
processing of the sonar data, but time delays in
processing sonar data is a difficult problem to handle and
is still under research. We would anticipate, however,
that in the future, sonar based relative navigation without
the use of LBL could be possible in structured or feature
rich scenes. The work is continuing.

ACKNOWLEDGMENT

The authors wish to recognize the financial support
of the National Science Foundation under Grant
No.BCS-9306252

REFERENCES

[1] Albus, J., "System Description and Design
Architecture for Multiple Autonomous Undersea
Vehicles" National Institute of Standards and
Technology, Technical Note 1251, September 1988

[2] Brooks, R. A., "A Robust Layered Control System
for a Mobile Robot" IEEE Journal of Robotics and
Automation, Vol. RA-2, No. 1, pp. 14-23, 1986.

[3] Bonasso, R.P., Barrat, J. "A Reactive Robot System
for Find and Visit Tasks in a Dynamic Ocean
Environment", Proceedings of the 8th UUST, University
of New Hampshire, Durham, NH. September 27-29, 1993
pp. 69-80

[4] Healey, A.J., Marco, D. B., " Experimental
Verification of Mission Planning by Autonomous
Mission Execution and Data Visualization using the NPS
AUV II." Proceedings of IEEE Oceanic Engineering
Society Symposium on Autonomous Underwater Vehicles,
AUV-92 Washington DC., June 2-3, 1992.

[5] Healey, A.J., Marco, D. B., "Slow Speed Flight
Control of Autonomous Underwater Vehicles:
Experimental Results with NPS AUV II" Proceedings of
the 2nd International Offshore and Polar Engineering
Conference, San Francisco, July 14-19 1992.

[6] Healey, A. J., Lienard, D., "Multivariable Sliding
Mode Control for Autonomous Diving and Steering of
Unmanned Underwater Vehicles", IEEE Journal of
Oceanic Engineering Vol. 18, No. 3, July 1993 pp. 1-13

[7] Byrnes, R. B."The Rational Behavior Model: A
Multi Paradigm, Tri-Level Software Architecture For
Control Of Autonomous Vehicles", Ph.D. Dissertation,
Naval Postgraduate School, Monterey CA. March 1993

[8] Byrnes, R., Kwak, S. H., McGhee, R. B., Healey, A.
J., Nelson, M. L.,"Rational Behavior Model: An
Implemented Tri-Level Multilingual Software
Architecture for Control of Autonomous Vehicles"
Proceedings of the 8th UUST, University of New
Hampshire, Durham, NH. September 27-29, 1993 pp.
160-179

[9] Wang, H., Marks, R.L., Rock, S.M., Lee, M. J.,"
Task Based Control Architecture for an Untethered

Unmanned Submersible" Proceedings of the 8th UUST,
University of New Hampshire, Durham, NH. September
27-29, 1993 pp. 137-149

[10]Kwak, S. H., Thornton, F. P. B., "A Concurrent
Object-Oriented Implementation for the Tactical Level of
the Rational Behavior Model Software Architecture for
UUV Control ", Proceedings of the IEEE Symposium on
Autonomous Underwater Vehicle Technology, July 19-
20, Cambridge, Mass. 1994 pp. 54-60.

[11]Gelb, A. ed. "Applied Optimal Estimation" MIT
Press 10th printing 1988 ISBN # 0-262-57048-3.

[12]Healey, A. J., et. al. "Tactical / Execution Level
Coordination for Hover Control of the NPS AUV II
Using Onboard Sonar Servoing" Proceedings of the
IEEE Symposium on Autonomous Underwater Vehicle
Technology, July 19-20, Cambridge, Mass. 1994 pp. 129-
138.

Figure 1 Outline Of The NPS PHOENIX Vehicle

OS-9, M68030
Execution Level
 Code

 Prolog
 Strategic Level
 Rules

Tactical Level
 Functions

 Sonar
Manager

 SGI
Indigo Elan

 Sonar
 Display
 Functions

A B

C

Gespac

User Interface
Sun Sparc 4

Figure 2 Outline Of The Phoenix Networked Controller

DACs

timer
cards

ADCs

serial /
parallel

card

G-9
6

 bus

read
sensors

read
scripts

and flags

initialize
PIA

pins,ADC,
timer cards,sonar,

gyros,fi
ns

14
bits

PIA
card

power
suplies
 cage

dgthruster
pwr

screw pwr
sonar pwr

ST 725
sonar

ST 1000
sonar

directiona
l

gyro
serial /
parallel
 card

to / from DOS (Tactical
level Scripts)

to - from laptop for download data,
upload code

Software
Drivers

check
time

 / wait

compute and
send control serial

I/O

to
fins

from speed wheels /
sensor

to motor
servo
amps

from
gyros

depth cell

Hardware
Cards

write data
to

 memory

Diagram of the Software / Hardware Interface
of the

Execution Level of the NPS AUV II

.

.

.

if flag,
do

control

if flag,
do

control

if flag,
do

control

Software Control
Modules

Figure 3 The Structure Of The Execution Level Software

